# FINALCA - May 2018 <br> Strategic Financial M anagement 

## Test Code - F80

Branch:
Date: 01.03.2018
(50 M arks)
Note: All questions are
compulsory.

## Question 1 (10 marks)

(i)

|  | E Ltd. | H Ltd. |
| :---: | :---: | :---: |
| M arket capitalisation | 1000 lakhs | 1500 lakhs |
| No. of shares | 20 lakhs | 15 lakhs |
| M arket Price per share | '50 | 100 |
| P/E ratio | 10 | 5 |
| EPS | 5 | 20 |
| Profit | 100 lakh | 300 lakh |
| Share capital | 200 lakh | 150 lakh |
| Reserves and surplus | 600 lakh | 330 lakh |
| Total | 800 lakh | 480 lakh |
| Book Value per share | '40 | 32 |

(ii) Calculation of Swap Ratio

EPS
Book value
Market price

1:4i.e.
$4.0 \times 40 \%$
1.6
$1: 0.8$ i.e. $\quad 0.8 \times 25 \%$
0.2

1:2i.e. $2.0 \times 35 \%$
Total
0.7

Swap ratio is for every one share of H Ltd., to issue 2.5 shares of E Ltd. Hence, total no. of shares to be issued 15 lakh $\times 2.5=37.50$ lakh shares ( 3 marks)
(iii) Promoter's holding $=9.50$ lakh shares $+(10 \times 2.5=25$ lakh shares $)=34.50$ lakh i.e. Promoter's holding \% is ( $34.50 \mathrm{lakh} / 57.50 \mathrm{lakh}$ ) $\times 100=60 \%$. ( 1 mark)
(iv) Calculation of EPS after merger (1 mark)

Total No. of shares $\quad 20$ lakh +37.50 lakh $=57.50$ lakh
EPS $\frac{\text { Total profit }}{\text { No. of shares }}=\frac{100 \text { lakh }+300 \text { lakh }}{57.50 \text { lakh }}=\frac{400}{57.50}={ }^{`} 6.956$
(v) Calculation of $M$ arket price and $M$ arket capitalization after merger (1 mark)

Expected market price $\quad$ EPS $6.956 \times P / E 10=` 69.56$
M arket capitalization $\quad=` 69.56$ per share $\times 57.50$ lakh shares

$$
=` 3,999.70 \text { lakh or ` } 4,000 \text { lakh }
$$

(vi) Free float of market capitalization $=` 69.56$ per share $\times(57.50$ lakh $\times 40 \%)$ (1 mark)

$$
\text { =` } 1599.88 \text { lakh }
$$

## Question 2 (6 marks)

b.

1. Current Market Price of Bond

| Time | CF | PVIF 8\% PV (CF) | PV (CF) |
| :---: | :---: | :---: | :---: |
| 1 | 14 | 0.926 | 12.964 |
| 2 | 14 | 0.857 | 11.998 |
| 3 | 14 | 0.794 | 11.116 |
| 4 | 14 | 0.735 | 10.290 |
| 5 | 114 | 0.681 | $\underline{77.634}$ |
|  |  | ¿PV (CF) i.e. $P_{0}=$ | $\underline{124.002}$ |

Say
124.00
2. Minimum M arket Price of Equity Shares at which Bondholder should exercise conversion option:

124 $/ 40=6.20$
(1 mark)
3. Duration of the bond
(3 marks)

| Year | Cash flow | P.V. @ 8\% |  | Proportion of | Proportion of bond |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | bond value | value xtime (years) |
| 1 | 14 | 0.926 | 12.964 | 0.105 | 0.105 |
| 2 | 14 | 0.857 | 11.998 | 0.097 | 0.194 |
| 3 | 14 | 0.794 | 11.116 | 0.089 | 0.267 |
| 4 | 14 | 0.735 | 10.290 | 0.083 | 0.332 |
| 5 | 114 | 0.681 | $\underline{77.634}$ | $\underline{0.626}$ | $\underline{3.130}$ |
|  |  |  | $\underline{124.002}$ | $\underline{1.000}$ | $\underline{4.028}$ |

## Question 3 (8 marks)

Calculation of Profit after tax (PAT) (1 mark)

|  |  |
| :--- | ---: |
| Profit before interest and tax (PBIT) | $32,00,000$ |
| Less: Debenture interest (` \(64,00,000 \times\) & \(\underline{7,68,000}\) \\ \(12 / 100\) ) & \(24,32,000\) \\ Profit before tax (PBT) & \(\underline{8,51,200}\) \\ Less: Tax @ 35\% & \(15,80,800\) \\ Profit after tax (PAT) & \\ Less: Preference & \\ Dividend & \(\underline{3,20,000}\) \\ (' 40,00,000 \(\times 8 / 100\) ) & \\ Equity Dividend (` $80,00,000 \times 8 / 100$ ) | $\underline{6,40,000}$ |
| Retained earnings (Undistributed profit) | $\underline{9,60,000}$ |

Calculation of Interest and Fixed Dividend Coverage
(1 mark)
PAT + Debenture interest
$=\quad$ Debenture interest + Preference
dividend
$=\frac{15,80,800+7,68,000}{7,68,000+3,20,000}=\frac{23,48,800}{10,88,000}=2.16$ times
(b) Calculation of Capital Gearing Ratio (1 mark)

Capital Gearing Ratio = Fixed interest bearing funds
Equity shareholders' funds
$=\frac{\text { Preference Share Capital +Debentures }}{\text { Equity Share Capital +Reserves }}=\underline{40,00,000}+\frac{+64,00,000}{80,00,000}+32,00,000$

## 1,04,00,000

$=1,12,00,000=0.93$
(c) Calculation of Yield on Equity Shares: (1 mark)

Yield on equity shares is calculated at $50 \%$ of profits distributed and $5 \%$ on undistributed profits:
$50 \%$ on distributed profits ( $\mathbf{~} 6,40,000 \times 50 / 100$ ) 0
$5 \%$ on undistributed profits ( $\mathbf{~} 6,20,800 \times 5 / 100$ )

Yield on equity shares

| Yield on equity shares $\% \quad$ | Yield on shares <br> Equity share capital$\times 100$ |
| ---: | :--- |
|  | $=\frac{3,51,040}{80,00,000} \times 100=4.39 \%$ or, $4.388 \%$. |

## Calculation of Expected Yield on Equity shares (3 marks)

Note: There is a scope for assumptions regarding the rates (in terms of percentage for every one time of difference between Sun Ltd. and Industry Average) of risk premium involved with respect to Interest and Fixed Dividend Coverage and Capital Gearing Ratio. The below solution has been worked out by assuming the risk premium as:
(i) $1 \%$ for every one time of difference for Interest and Fixed Dividend Coverage.
(ii) $2 \%$ for every one time of difference for Capital Gearing Ratio.
(a) Interest and fixed dividend coverage of Sun Ltd. is 2.16 times but the industry average is 3 times. Therefore, risk premium is added to Sun Ltd. Shares @ $1 \%$ for every 1 time of difference.
Risk Premium $=3.00-2.16(1 \%)=0.84(1 \%)=0.84 \%$
(b) Capital Gearing ratio of Sun Ltd. is 0.93 but the industry average is 0.75 times. Therefore, risk premium is added to Sun Ltd. shares @ $2 \%$ for every 1 time of difference.
Risk Premium $=(0.75-0.93)(2 \%)$

$$
=0.18(2 \%)=0.36 \%
$$

Normal return expected(\%)
Add: Risk premium for low interest and fixed dividend coverage ..... 0.84
Add: Risk premium for high interest gearing ratio ..... 0.36
10.80
Value of Equity Share (1 mark)
$=\frac{\text { Actual yield }}{\text { Expected yield }} \times$ Paid-up value of share $=\frac{4.39}{10.80} \times 100={ }^{`} 40.65$

## Question 4 (8 marks)

(in lakhs)

|  | (4 marks) <br> Quote A | (4 marks) Quote B |
| :---: | :---: | :---: |
| Calculation of Present Value (PV) of cash payments: |  |  |
| Initial lease rent (PV) | 5.00 | 1.00 |
| Less: PV of tax benefit on initial payment of lease rent $\text { ` } 5.00 \text { lakh } \times 0.30 \times 0.91$ & (1.365) &  \hline '1.00 lakh $\times 0.30 \times 0.91$ & & (0.273)  \hline PV of Annual lease rents & &  \hline 21.06 lakh $\times 0.7 \times 2.49$ & 36.71 &  \hline 19.66 lakh $\times 0.7 \times 3.17$ & & 43.63  \hline Total payments in PV & 40.345 & 44.357  \hline Capital Recovery Factor (reciprocal of Annuity Factor) & &  \hline 1/2.49 & 0.402 &  \hline 1/3.17 & - & 0.315  \hline Equated Annual Payment or cash outflow (`lakhs) | 16.20 | 13.979 |

Conclusion: Since Quote B implies lesser equated annual cash outflow, it is better.

## Question 5 (10 marks)

(b) Yield for 9 months
= 115\%

Market value of Investments as on $31.03 .2013=1,00,000 /-+(1,00,000 \times 115 \%)$

$$
\begin{aligned}
& =` 2,15,000 /- \\
& =(2,15,000-10,000) / 10,000=` 20.50
\end{aligned}
$$

Therefore, NAV as on 31.03.2013
(1 marks)
(NAV would stand reduced to the extent of dividend payout, being ( $100,000 \times 10 \%$ ) = ` 10,000 )
Since dividend was reinvested by Mr. X, additional units acquired

$$
=\frac{` 10,000}{` 20.50}=487.80 \text { units }
$$

Therefore, units as on 31.03.2013
[Alternately, units as on 31.03 .2013
Dividend as on 31.03.2014

$$
\begin{aligned}
& =10,000+487.80=10,487.80 \\
& =(2,15,000 / 20.50)=10,487.80] \\
& =10,487.80 \times 10 \times 0.2=` 20,975.60
\end{aligned}
$$

Let $X$ be the NAV on 31.03.2014, then number of new units reinvested will be

- 20,975.60/X. Accordingly 11296.11 units shall consist of reinvested units and 10487.80 (as on 31.03 .2013 ). Thus, by way of equation it can be shown as follows:

$$
11296.11=\frac{20975.60}{X}+10487.80
$$

Therefore, NAV as on 31.03 .2014

NAV as on $31.03 .20,975.60 /(11,296.11-10,487.80)$

$=` 25.95(2$ marks $)$
b.

| Sharpe Ratio | $S=\left(R_{p}-R_{f}\right) / \sigma_{p}$ |
| :---: | :---: |
| Treynor Ratio | $\mathrm{T}=\left(R_{p}-R_{f}\right) / \beta_{p}$ |
| Where, |  |

Where,

$$
\begin{aligned}
R_{p} & =\text { Return on Fund } \\
R_{f} & =\text { Risk-free rate } \\
\sigma_{p} & =\text { Standard deviation of Fund } \\
\beta_{p} & =\text { Beta of Fund }
\end{aligned}
$$

Reward to Variability (Sharpe Ratio)
( $\mathbf{~}^{1 / 2}$ marks)

| Mutual <br> Fund | $\mathbf{R}_{\mathbf{p}}$ | $\mathbf{R}_{\mathbf{f}}$ | $\mathbf{R}_{\mathbf{p}}-\mathbf{R}_{\mathbf{f}}$ | $\mathbf{\sigma}_{\mathbf{p}}$ | Reward to <br> Variability | Ranking |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | 15 | 6 | 9 | 7 | 1.285 | 2 |
| B | 18 | 6 | 12 | 10 | 1.20 | 3 |
| C | 14 | 6 | 8 | 5 | 1.60 | 1 |
| D | 12 | 6 | 6 | 6 | 1.00 | 5 |
| E | 16 | 6 | 10 | 9 | 1.11 | 4 |

Reward to Volatility (Treynor Ratio)
( $\mathbf{2}^{1 ⁄ 2}$ marks)

| Mutual <br> Fund | $\mathbf{R}_{\mathbf{p}}$ | $\mathbf{R}_{\mathbf{f}}$ | $\mathbf{R}_{\mathbf{p}}-\mathbf{R}_{\mathbf{f}}$ | $\boldsymbol{\beta}_{\mathbf{p}}$ | Reward to <br> Volatility | Ranking |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | 15 | 6 | 9 | 1.25 | 7.2 | 2 |
| B | 18 | 6 | 12 | 0.75 | 16 | 1 |
| C | 14 | 6 | 8 | 1.40 | 5.71 | 5 |
| D | 12 | 6 | 6 | 0.98 | 6.12 | 4 |
| E | 16 | 6 | 10 | 1.50 | 6.67 | 3 |

## Question 6 (8 marks)

(i) The EPS of the firm is ${ }^{`} 10$ (i.e., ` \(2,00,000 / 20,000\) ). The P/E Ratio is given at 12.5 and the cost of capital, ke, may be taken at the inverse of P/E ratio. Therefore, ke is 8 (i.e., \(1 / 12.5\) ). The firm is distributing total dividends of \({ }^{`} 1,50,000\) among 20,000 shares, giving a dividend per share of ${ }^{`} 7.50$. the value of the share as per Walter's model may be found as follows:
$\mathrm{P} 0=\mathrm{D} / \mathrm{Ke}+(\mathrm{r} / \mathrm{Ke})(\mathrm{E}-\mathrm{D}) / \mathrm{Ke}=7.50 / 0.08+(.10 / 0.08)(10-7.5) / 0.08=132.81$ (2 marks)
The firm has a dividend payout of $75 \%$ (i.e., ` \(1,50,000\) ) out of total earnings of \(` 2,00,000\). since, the rate of return of the firm, $r$, is $10 \%$ and it is more than the ke of $8 \%$, therefore, by distributing $75 \%$ of earnings, the firm is not following an optimal dividend policy. The optimal dividend policy for the firm would be to pay zero dividend and
in such a situation, the market price would be
$\mathrm{P} 0=\mathrm{D} / \mathrm{Ke}+(\mathrm{r} / \mathrm{Ke})(\mathrm{E}-\mathrm{D}) / \mathrm{Ke}=0 / 0.08+(.10+.08)(10-0) / 0.08=156.25$
So, theoretically the market price of the share can be increased by adopting a zero payout. (2 marks)
(ii) The P/E ratio at which the dividend policy will have no effect on the value of the share is such at which the ke would be equal to the rate of return, $r$, of the firm. The Ke would be $10 \%(=r)$ at the P/E ratio of 10 . Therefore, at the P/E ratio of 10, the dividend policy would have no effect on the value of the share(2 marks)
(iii) If the $\mathrm{P} / \mathrm{E}$ is 8 instead of 12.5 , then the ke which is the inverse of $\mathrm{P} / \mathrm{E}$ ratio, would be 12.5 and in such a situation ke>r and the market price, as per Walter's model would be $\mathrm{PO}=\mathrm{D} / \mathrm{Ke}+(\mathrm{r} / \mathrm{Ke})(\mathrm{E}-\mathrm{D}) / \mathrm{Ke}=7.50 / 0.125+(0.10 / 0.125)(10-7.5) / 0.125=76(2$ marks $)$

